Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering
نویسندگان
چکیده
منابع مشابه
Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering
The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-...
متن کاملMetabolic engineering of fatty acids from soybean seeds
Background The worldwide demand for new renewable sources of energy is rising every day [1]. Biodiesel is a green fuel made mainly from soybean oil, on average composed of 25% oleic acid and 13% palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission [2,3]. To improve the quality and performance of soybean oil as biodies...
متن کاملPathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation.
Brassica napus (canola) plants were genetically manipulated to increase the amount and composition of carotenoids in seeds by using seven key enzyme genes involved in ketocarotenoid formation, which originated from a soil bacterium Pantoea ananatis (formerly called Erwinia uredovora 20D3), and marine bacteria Brevundimonas sp. strain SD212 and Paracoccus sp. strain N81106 (formerly called Agrob...
متن کاملCentral metabolic fluxes in the endosperm of developing maize seeds and their implications for metabolic engineering.
¹⁴C labeling experiments performed with kernel cultures showed that developing maize endosperm is more efficient than other non-photosynthetic tissues such as sunflower and maize embryos at converting maternally supplied substrates into biomass. To characterize the metabolic fluxes in endosperm, maize kernels were labeled to isotopic steady state using ¹³C-labeled glucose. The resultant labelin...
متن کاملYeast metabolic engineering for hemicellulosic ethanol production.
Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of fungal xylose isomerase or modi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2015
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0138196